Dendritic spikes mediate negative synaptic gain control in cerebellar Purkinje cells.

نویسندگان

  • Ede A Rancz
  • Michael Häusser
چکیده

Dendritic spikes appear to be a ubiquitous feature of dendritic excitability. In cortical pyramidal neurons, dendritic spikes increase the efficacy of distal synapses, providing additional inward current to enhance axonal action potential (AP) output, thus increasing synaptic gain. In cerebellar Purkinje cells, dendritic spikes can trigger synaptic plasticity, but their influence on axonal output is not well understood. We have used simultaneous somatic and dendritic patch-clamp recordings to directly assess the impact of dendritic calcium spikes on axonal AP output of Purkinje cells. Dendritic spikes evoked by parallel fiber input triggered brief bursts of somatic APs, followed by pauses in spiking, which cancelled out the extra spikes in the burst. As a result, average output firing rates during trains of input remained independent of the input strength, thus flattening synaptic gain. We demonstrate that this "clamping" of AP output by the pause following dendritic spikes is due to activation of high conductance calcium-dependent potassium channels by dendritic spikes. Dendritic spikes in Purkinje cells, in contrast to pyramidal cells, thus have differential effects on temporally coded and rate coded information: increasing the impact of transient parallel fiber input, while depressing synaptic gain for sustained parallel fiber inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic calcium spikes are tunable triggers of cannabinoid release and short-term synaptic plasticity in cerebellar Purkinje neurons.

Understanding the relationship between dendritic excitability and synaptic plasticity is vital for determining how dendrites regulate the input-output function of the neuron. Dendritic calcium spikes have been associated with the induction of long-term changes in synaptic efficacy. Here we use direct recordings from cerebellar Purkinje cell dendrites to show that synaptically activated local de...

متن کامل

The origin of the complex spike in cerebellar Purkinje cells.

Activation of the climbing fiber input powerfully excites cerebellar Purkinje cells via hundreds of widespread dendritic synapses, triggering dendritic spikes as well as a characteristic high-frequency burst of somatic spikes known as the complex spike. To investigate the relationship between dendritic spikes and the spikelets within the somatic complex spike, and to evaluate the importance of ...

متن کامل

SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells

Small-conductance Ca(2+)-activated K(+) channels (SK channels) modulate excitability and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here, we demonstrate long-lasting plasticity of intrinsic excitability (IE) in dendrites that results from changes in the gain of this regulatory mechanism. Using dendritic patch-clamp recordings from rat cerebellar Purkinje cells, we...

متن کامل

Dendritic Kv3.3 Potassium Channels in Cerebellar Purkinje Cells Regulate Generation and Spatial Dynamics of Dendritic Ca Spikes

Zagha E, Manita S, Ross WN, Rudy B. Dendritic Kv3.3 potassium channels in cerebellar Purkinje cells regulate generation and spatial dynamics of dendritic Ca spikes. J Neurophysiol 103: 3516–3525, 2010. First published March 31, 2010; doi:10.1152/jn.00982.2009. Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation...

متن کامل

Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 51  شماره 

صفحات  -

تاریخ انتشار 2010